
DETERMINATION OF HEAT LIBERATION COEFFICIENTS WITHIN A CHANNEL 

BY SOLUTION OF THE CONVERSE THERMAL CONDUCTIVITY PROBLEM 
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A method is presented for determination of local heat liberation coefficients, 
based on numerical solution of the two-dimensional converse thermal conductiv- 
ity problem. 

Among methods for determining nonsteady-state boundary conditions, the most developed 
are those methods based on solution of one-dlmensional converse thermal conductivty prob- 
lems for thermal sensors of canonical form. However, use of one-dimensional thermal sen- 
sors often proves impossible. Therefore, to determine local heat liberation coefficients 
along a channel length, it is desirable to consider a model channel as a two-dimensional 
cylindrical thermal sensor. 

We will consider a problem of two-dimensional thermal conductivity of a hollow cylin- 
der with nonlinearity of the first sort 
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c(T), k(T), f(x, x), Tf(x, x) are known functions. 

Within this formulation we must solve the limiting converse thermal conductivity prob- 
lem of determining the heat liberation coefficients ~(x, T). 

Quantizing the thermal sensor volume leads to the heat measurement system shown in Fig. 
i. If we write the thermal balance equation for each of the elements, then with consider- 
ation of Eq. (2) we obtain a system of nonlinear algebraic equations: 

Fig. i. Heat measurement system 
(thermal sensor quantization). 
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Fig. 2. Numerical experiment on identification 
of heat liberation coefficient at various dis- 
tances x/d from input to channel for monotonic 
distribution of heat liberation coefficient over 
channel length (a) and for distribution charac- 
teristic of turbulent flow at channel input sec- 
tion (b): i) x/d = 1.67; 2) 5; 3) 8.33; 4) 
11.67; 5) 15; 6) 18.33. =, W/(ma.K); x, sec. 

for elements on the heat sensing surface 
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~.~+m = ~0 (1 q- b~ (Ti q- T~+m)/2), ci = Co (1 q- beT~). 

To d e t e r m i n e  b o u n d a r y  c o n d i t i o n s  i n  c a v i t i e s  w i t h  d i f f i c u l t  a c c e s s  f o r  t h e r m o s e n s o r s  
i t  i s  d e s i r a b l e  t o  imbed t h e r m o c o n v e r t e r s  on t h e  o u t e r  t h e r m a l l y  i n s u l a t e d  s u r f a c e  o f  t h e  
t h e r m o s e n s o r  ( F i g .  1 ) .  

Solution of system (3) defines temperatures of the elements and the heat sensing sur- 
face for a given moment of time. The next step in solving the converse thermal conductivity 
problem is determination of the unknown values of specific thermal flux qw(X, x) on flhe heat 
accepting surface from the temperature gradient in the adjacent surface layer. The non- 
linearity of the first sort is considered by iteration. The heat liberation coefficient on 
the heat sensing surface is calculated with the expression 

q,~, (x, ~) (4)  
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Fig. 3. Results of experiments 
to test heat liberation coeffi- 
cient determination technique. 
Notation as in Fig. 2. 

The problem is regularized by using spline-smoothing of the temperature sensor indica- 
tions according to the method proposed in [i] with an algorithm for automatic search for 
weight coefficients [2]. 

Using the method described above a program was written in the Fortran-IV language for 
an ES computer. To test the method of identifying heat liberation coefficients in the 
presence of noise in the initial data a numerical experiment was performed for a cylindri- 
cal thermal sensor of 12KhlSNIOT steel with dimensions as follows: internal radius R I = 
0.0015 m, external radius R E = 0.0035 m, length L = 0.06 m with monotonic distribution of 
the heat liberation coefficient along the channel length and for the distribution character- 
istic of a turbulent flow at the channel input section. 

The comparison of prespecified and reconstructed heat liberation coefficients shown in 
Fig. 2 indicates that the method of determining =(x, x) by solution of the two-dimensional 
converse thermal conductivity problem produces stable results over the entire time interval 
except for the initial period up to x < 0.8 sec. Deviation of the =(x, x) values obtained 
from the prespecified ones did not exceed 5% for x ~ 0.8 sec. 

Experimental testing of the proposed method was carried out by a study of heat libera- 
tion in a circular tube using the apparatus described in [3]. 

The working section was a cylindrical tube (D = 7.10 -3 m, d = 3"10 -3 m) with relative 
length L/d = 20, constructed of 12KhlSNIOT steel. In accordance with the proposed method 
six uniformly spaced type KhK thermocouples with electrode diameter 0.2-10 -3 m were welded 
to the outer channel surface. At the attachment points the thermoelectrodes were flattened 
to a thickness of (O.4-0.5)-10 -~ m. The channel was thermally insulated on the outside by 
cotton-paper wool and asbestos, and on its faces by paper 0.5-0.7 mm thick. 

Results of numerical experiments performed on an ES-1033 computer with a Fortran-IV 
program are shown in Fig. 3, whence it is evident that within an accuracy of • the ex- 
perimental points coincide with the known dependence for heat exchange in turbulent flow 
of air in a circular tube [4]= 

N u :  0,018Re~ ( 6 )  

where es is the correction for the initial segment. 

It should be noted that the need to find steady state heat liberation coefficients im- 
poses limitations on the experiment parameters, since thermal and gas dynamic nonsteady 
states significantly affect heat liberation [5]. To evaluate this effect similarity num- 
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bers were defined: 
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characterizing the effect of thermal and gas dynamic nonsteady state conditions on heat 
exchange. The intervals of change of the numbers KTg* and KGg were as follows: 

O~<Krg<~O,5.  lO -e, O<~Kog< ~ 10 -6 . 
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Based on the results of the experiments performed we may conclude that for the indi- 
cated values of the criteria KTg* and KGg the nonsteady state does not affect heat libera- 
tion [5], which permits us to treat the parameter change modes as quasisteady states. 

The results obtained confirm the reliability and effectiveness of the method for de- 
termining heat liberation coefficients considered herein. 

NOTATION 

T, temperature; Tw, temperature of heat-sensing surface; Tf, heat exchange agent tem- 
perature; k, thermal conductivity coefficient; c, specific heat; p, density; x, spatial 
coordinate; R, RI, RE, current, internal, and external radii of sensor; L, sensor length; 
AR, distance between approximation points along thermal sensor thickness; AL, distance be- 
tween approximation points along thermal sensor length; V, volume of sensor element; F, 
area; a, heat liberation coefficient; T, time; AT, step in the time; n, i, k, element num- 
bers; j, time step number; k0, bk, co, b c, coefficients of approximating linear temperature 
dependences of thermal conductivity coefficient and sensor material specific heat; qw, thermal 
flux density on heat sensing wall; ~, dynamic viscosity; G, heat exchange agent flow rate; 
Cp, specific heat of heat exchange agent; d, channel diameter. 
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DETERMINATION OF THERMAL FLUX DENSITY, MEDIUM TEMPERATURE 

AND HEAT LIBERATION COEFFICIENT BY SOLUTION OF THE CONVERSE 

THERMAL CONDUCTIVITY PROBLEM 

M. P. Kuz'min UDC 621.1.001.57:536.24 

The converse thermal conductivity problem of determining temperature of the 
hot medium, heat liberation coefficient, and thermal flux density for asym- 
metic heating is solved using results of wall temperature measurements at 
three points located different distances from the hot surface. 

In operation of high power equipment experimental determination of the temperature of 
the hot medium, the thermal flux density, and the heat liberation coefficient from the me- 
dium to the body wall under nonsteady state conditions is difficult, since thermal sensors 
will not tolerate the high thermal loads involved. In connection with this one can solve 
the converse problem of determining the basic parameters of the nonsteady state heat ex- 
change between the hot medium and the body wall by using measurements of temperature over 
time at three points located at different distances from the heated (hot) wall surface. 

We will consider the one-dimensional process of heat transport within a wall, one 
surface of which is heated by the hot medium, while the other is cooled by a cold medium 
in accordance with boundary conditions of the third type. 
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